Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 173(1): 246-258, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33583021

RESUMO

Heavy metal (HM) pollution is a serious agro-economic concern and algae can be used as one of the bioremediating agents as it can grow in different water bodies. In this study, the Scenedesmus acutus and Chlorella pyrenoidosa were exposed to various concentrations of Pb2+ for 96 h and a multidimensional toxicity assessment has been performed by pulse amplitude modulation technique and Fourier transform infrared spectroscopy (FTIR). High-angle annular dark-field scanning transmission electron microscopy coupled energy dispersive spectroscopy (HAADF-S/TEM-EDS) detected intracellular localization of Pb2+ , thus confirming algal bio-accumulation abilities. Sensitivity assay demonstrated that 500 and 400 ppm of Pb2+ as minimum inhibitory concentrations (MIC50) for S. acutus and C. pyrenoidosa, respectively, which inhibited growth (OD) by >50% in 96 h. During bioremoval studies, S. acutus and C. pyrenoidosa were found to remove ∼52 and ∼32% of total Pb2+ , respectively. The particulate analysis of Pb2+ by ICP-OES showed >99.5% biosorption capacity by both the species. The biomass characterization by FTIR showed the involvement of various cell wall functional groups such as hydroxyl, alkane, and C=C groups in the biosorption of Pb2+ by both the species. The noninvasive chlorophyll fluorescence techniques provide a quick insight on heavy metal stress and can be adapted as a rapid detection tool to study the Pb2+ stress. S. acutus strain showed higher tolerance and higher bioremoval capacity than C. pyrenoidosa. However, both the species can be exploited for biosorption of Pb2+ from aquatic streams as an alternative way for low cost Pb2+ recovery systems.


Assuntos
Chlorella , Metais Pesados , Microalgas , Scenedesmus , Água Doce
2.
Arch Microbiol ; 203(4): 1439-1450, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33392625

RESUMO

Chlamydomonas reinhardtii is one of the most characterized green algae. The open-pond cultivation can be challenging due to sensitivity of strain to fluctuating environmental conditions and unavailability of low-cost photoautotrophic media. In this study, the photoautotrophic growth of C. reinhardtii was evaluated in 1-m2 open ponds placed in greenhouse. Sodium bicarbonate (NaHCO3) was evaluated as an alternative buffering agent to tris. The effect of buffer and pH was tested. The growth was studied in the presence of various nitrogen [urea and ammonium bicarbonate (NH4HCO3)] sources. In the study, it was found that 125-ppm NaHCO3 as an optimum concentration. The buffering agent in the media was found to have major impact on growth. Without buffering agent, culture did not grow, and pH drop was observed. The sodium bicarbonate-buffered media reported to have the lowest bacterial contamination (18.3%), highest AFDW per OD (0.39 ± 0.027 g/L) and higher Fv/Fm (0.714 ± 0.016), whereas these values were found to be 62%, 0.19 ± 0.02 g/L and 0.537 ± 0.053 for tris-grown culture, respectively. The pH 7.0-7.5 was determined as an optimum, whereas pH 6.5-7.0 and 8.0-8.5 were found to affect the growth and induce palmelloidy. The OD and AFDW of culture grown in NH4HCO3 were found equivalent to a standard nitrogen source (NH4Cl), whereas culture shown poor growth in urea. Based on these data, NH4HCO3 media recipe and the optimized cultivation parameters were selected for photoautotrophic cultivation of Chlamydomonas in greenhouse open ponds.


Assuntos
Processos Autotróficos , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Processos Fototróficos , Lagoas/química , Chlamydomonas reinhardtii/metabolismo , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Nitrogênio/análise , Bicarbonato de Sódio/análise
3.
Chemosphere ; 269: 128755, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33143896

RESUMO

Cadmium (Cd) contamination in different water bodies is a matter of serious concern, as it can cause biomagnification in our food chain up to several trophic levels. In this study, Cd toxicity was investigated in the micro-algae Chlorella pyrenoidosa and Scenedesmus acutus exposed to various concentrations of Cd for 96 h. The inhibitory and toxic effects of Cd2+ on growth and photosynthetic parameters of algae were demonstrated. The bioremediation potentials of these algae were investigated and bioremoval mechanisms were confirmed using qualitative electron microscopic assay such as scanning/transmission electron microscope (S/TEM). The photochemical quenching (Fv/Fm), quantum yield (YII), relative electron transfer rate (rETR) and non-photochemical quenching (NPQ) were inhibited significantly and reduced by ≥ 50% of the control at MIC 50 values. The C. pyrenoidosa and S. acutus biomass have shown 30% and 20% reduction in carbon content and 10% and 12% reduction in nitrogen content at MIC50 values of Cd2+ treatment, respectively. During bioremoval studies, C. pyrenoidosa and S. acutus have shown 45.45% and 57.14% Cd2+ removal of Cd2+ from initial concentration of 1.5 ppm. Out of total cadmium removal C. pyrenoidosa was reported 3% bioaccumulation and 97% biosorption. Whereas S. acutus showed 1.5% accumulation and 98.5% biosorption. The S/TEM images showed the surface accumulation and bioaccumulation of cadmium inside the cytoplasm, vacuoles, and chloroplast. Thus cultivating C. pyrenoidosa and S. acutus would be beneficial in Cd2+ contaminated water bodies as they serve the dual purpose by Cd remediation and algal biomass production.


Assuntos
Chlorella , Microalgas , Scenedesmus , Biomassa , Cádmio/toxicidade , Água Doce
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...